Introduction to Linear Algebra

Rubén Pérez Sanz

Universitat Autònoma de Barcelona

September 22, 2020

Rubén Pérez Sanz

Introduction to Linear Algebra

1 / 62

Table of Contents

 Matrix and Vector Algebra Systems of Linear Equations Vectors Matrices and Matrix Operations Marix Multiplication The Transpose

 Determinants and inverse matrices Determinants
 3 order Determinants
 Determinants rules
 Inverse of a Matrix

Previously we have seen how to solve a very simple system of equations, namely a linear system with 2 equations and 2 unknowns.

The way these systems are solved are quite straight forward. However, when we have systems of 3,4,... or *n* equations we need a more systematic way to solve them.

In this sense is crucial to understand the notation at hand. We will consider a system of **m** equations and **n** unknowns $x_1, x_2, ..., x_n$:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

.....

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
(1)

Where $a_{11}, a_{12}, ..., a_{mn}$ are the coefficients of the system, and $b_1, ..., b_m$ are called the right-hand sides.

Note:

- 1. The equations are linear in the unknowns
- 2. One or more coefficients might be 0

Rubén Pérez Sanz

A solution to (1) is a list of numbers $s_1, s_2, ..., s_n$ that satisfy all the equations simultaneously where $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$.

The system is called

• Consistent if it has at least 1 solution

- **Determined:** if it has only one solution
- **Undetermined:** if it has infinitely many solutions
- Inconsistent if it has no solution

Example:

T. Haavelmo devised a model of the US economy for the years 1929-1941 based on the following equations:

(*i*)
$$c = 0.712y + 95.05$$
 (*ii*) $x = 0.158(c + x) - 34.3$

(*iii*)
$$y = c + x - s$$
 (*iv*) $x = 93.53$

Here *x* denotes total investment, *y* is disposable income, *s* is the total saving by firms, and *c* is total consumption. Write the system of equations in the form of (1) when the variables appear in the order *x*, *y*, *s*, and *c*. Then find the solution of the system.

Example:

С	—	0.712 <i>y</i>				= 95.05
0.158 <i>c</i>			_	0.842 <i>x</i>		= 34.3
С	_	у	+	x	_	\$ = 0
				x		= 93.53

VECTORS

Vectors are just a collection of number disposed in rows (row vector) or columns (column vector). Thus if **a** is a $n \times 1$ vector, we write

$$\mathbf{a} = (a_1, a_2, \cdots, a_n)$$

The numbers a_1, a_2, \dots, a_n are called the **components or coordinates** of the vector, which is referred to as the *n*-vector.

For example a 3-dimensional vector might be represented in the 3-dimensional space \mathbb{R}^3

VECTORS VECTOR OPERATIONS

Let **a** and **b** be two *n*-dimensional vectors and *s* and *t* two scalars, then we can perform the following operations

- summation: $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n)$
- Scalar product: $c = t\mathbf{a} = (ta_1, ta_2, \cdots, ta_n)$

Joining both operations together is said to be a **linear combination**, in symbols

$$t\begin{pmatrix}a_1\\a_2\\\vdots\\a_n\end{pmatrix}+s\begin{pmatrix}b_1\\b_2\\\vdots\\b_n\end{pmatrix}=\begin{pmatrix}ta_1+sb_1\\ta_2+sb_2\\\vdots\\ta_n+sb_n\end{pmatrix}$$

Vectors can be multiply between them. However this is a special operation that goes beyond intuition, in this way we define the inner product

Vectors can be multiply between them. However this is a special operation that goes beyond intuition, in this way we define the inner product

The **inner product** of the *n*-vectors $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ is defined as

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i$$

Example: because vectors are just a collection of numbers we can regard **p** as a vector with listed prices of some commodities and **x** as the list of quantities bought of those commodities. What will we obtain if we perform the inner product?

Example: because vectors are just a collection of numbers we can regard **p** as a vector with listed prices of some commodities and **x** as the list of quantities bought of those commodities. What will we obtain if we perform the inner product?

Solution: The total amount spent $\mathbf{S} = \mathbf{p} \cdot \mathbf{x} = \sum_{i=1}^{n} p_i x_i$

Example: because vectors are just a collection of numbers we can regard **p** as a vector with listed prices of some commodities and **x** as the list of quantities bought of those commodities. What will we obtain if we perform the inner product?

Solution: The total amount spent $\mathbf{S} = \mathbf{p} \cdot \mathbf{x} = \sum_{i=1}^{n} p_i x_i$

Question: What is the maximum that we can spend?

Example: because vectors are just a collection of numbers we can regard **p** as a vector with listed prices of some commodities and **x** as the list of quantities bought of those commodities. What will we obtain if we perform the inner product?

Solution: The total amount spent $\mathbf{S} = \mathbf{p} \cdot \mathbf{x} = \sum_{i=1}^{n} p_i x_i$

Question: What is the maximum that we can spend?

Answer: Total income *I*, i.e. $\mathbf{p} \cdot \mathbf{x} = \sum_{i=1}^{n} p_i x_i \le I$

Rubén Pérez Sanz

VECTORS RULES OF INNER PRODUCT

If **a**, **b** and **c** are *n*-vectors and α is a scalar, then

$$\mathbf{b} \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$\bullet \mathbf{a}(\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

$$(\alpha \mathbf{a}) \mathbf{b} = \mathbf{a} (\alpha \mathbf{b}) = \alpha (\mathbf{a} \cdot \mathbf{b})$$

$$\blacktriangleright a \cdot a > 0 \iff a \neq 0$$

A **matrix** is a rectangular array of numbers considered as one mathematical object. Matrices are composed of m rows and n columns, the are normally noted in bold letters such as **A**, **B**, etc. In general, they take the form:

$$\mathbf{A} = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
(2)

And we say that **A** is of a $m \times n$ order

Rubén Pérez Sanz

A matrix with one column or one row is called a vector.

row vector:

$$\mathbf{v} = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$$

column vector:

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Rubén Pérez Sanz

Examples:

$$\mathbf{A} = \begin{pmatrix} -1 & 2\\ 8 & 5\\ 7 & 6\\ 1 & 1 \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} \sqrt{5} & \frac{5}{4} & -7000 & 1 & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{c} = \begin{pmatrix} 2\\ \pi\\ -\ln\sqrt{3}\\ 0 \end{pmatrix}$$

Where **A** is a 4 × 2 matrix and $a_{32} = 6$, **r** is a 1 × 5 row vector and $r_4 = 1$, and **c** is a 4 × 1 column vector and $c_2 = \pi$

Rubén Pérez Sanz

Introduction to Linear Algebra

Exercise: Construct a 4 × 3 matrix such that $\mathbf{A} = (a_{ij})_{4\times 3}$ with $a_{ij} = 2i - j$

Exercise: Construct a 4 × 3 matrix such that $\mathbf{A} = (a_{ij})_{4\times 3}$ with $a_{ij} = 2i - j$

Solution:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 2 & 1 \\ 5 & 4 & 3 \\ 7 & 6 & 5 \end{pmatrix}$$

Only matrices of the same order can be summed

if
$$\mathbf{A} = (a_{ij})_{m \times n}$$
 and $\mathbf{B} = (b_{ij})_{m \times n}$, then the sum of $\mathbf{A} + \mathbf{B}$ is
 $\mathbf{A} + \mathbf{B} = (a_{ij})_{m \times n} + (b_{ij})_{m \times n} = (a_{ij} + b_{ij})_{m \times n}$

Exercise: If matrices are of different order they are said to be **non-conformable** for summation. What pair of matrices are conformable and non-conformable?

$$\mathbf{A} = \begin{pmatrix} -1 & 2 \\ 8 & 5 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 5 & 3 \\ 4 & -7 \\ \sqrt{2} & \pi \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 5 & 3 \\ 4 & -7 \\ 7 & 0 \end{pmatrix}$$

Exercise: If matrices are of different order they are said to be **non-conformable** for summation. What pair of matrices are conformable and non-conformable?

$$\mathbf{A} = \begin{pmatrix} -1 & 2 \\ 8 & 5 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 5 & 3 \\ 4 & -7 \\ \sqrt{2} & \pi \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 5 & 3 \\ 4 & -7 \\ 7 & 0 \end{pmatrix}$$

Solution:

- ► A-B and A-C are non-conformable
- ► B-C are conformable

Rubén Pérez Sanz

Introduction to Linear Algebra

Exercise: Sum the following matrices into **A** + **B** = **C**

$$\mathbf{A} = \begin{pmatrix} -1 & 2\\ 8 & 5\\ 7 & 6\\ 1 & 1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 5 & 3\\ 4 & -7\\ 7 & 0\\ \sqrt{2} & \pi \end{pmatrix}$$

Exercise: Sum the following matrices into **A** + **B** = **C**

$$\mathbf{A} = \begin{pmatrix} -1 & 2\\ 8 & 5\\ 7 & 6\\ 1 & 1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 5 & 3\\ 4 & -7\\ 7 & 0\\ \sqrt{2} & \pi \end{pmatrix}$$

Solution:

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \begin{pmatrix} 4 & 5\\ 12 & -2\\ 14 & 6\\ 1 + \sqrt{2} & 1 + \pi \end{pmatrix}$$

MATRICES AND MATRIX OPERATIONS SCALAR MULTIPLICATION

when a matrix **A** is multiplied by a scalar α , every entry is multiplied by this scalar:

$$\alpha \mathbf{A} = \alpha \left(a_{ij} \right)_{m \times n} = \left(\alpha a_{ij} \right)_{m \times n}$$

Exercise: work out αA for

$$\boldsymbol{\alpha} = -3$$
$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 2 & 1 \\ 5 & 4 & 3 \\ 7 & 6 & 5 \end{pmatrix}$$

MATRICES AND MATRIX OPERATIONS SCALAR MULTIPLICATION

when a matrix **A** is multiplied by a scalar α , every entry is multiplied by this scalar:

$$\alpha \mathbf{A} = \alpha \left(a_{ij} \right)_{m \times n} = \left(\alpha a_{ij} \right)_{m \times n}$$

Exercise: work out $\alpha \mathbf{A}$ for **Solution:**

$$\boldsymbol{\alpha} = -3$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 2 & 1 \\ 5 & 4 & 3 \\ 7 & 6 & 5 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -3 & 0 & 3 \\ -9 & -6 & -3 \\ -15 & -12 & -9 \\ -21 & -18 & -15 \end{pmatrix}$$

Rubén Pérez Sanz

Rules for matrix addition and multiplication by a scalar

- (A+B) + C = (A+B+C)
- $\blacktriangleright \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- $\blacktriangleright \mathbf{A} + \mathbf{0} = \mathbf{A}$
- $\blacktriangleright \mathbf{A} \mathbf{A} = \mathbf{0}$
- $(\alpha + \beta)\mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A}$
- $\mathbf{P} \quad \alpha \left(\mathbf{A} + \mathbf{B} \right) = \alpha \mathbf{A} + \alpha \mathbf{B}$

Note that because previous definitions of addition and scalar multiplication $3\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{A}$

Rubén Pérez Sanz

Gaussian elimination is a method for solving systems of equations, which uses the method of elimination already seen in a systematic manner.

METHOD:

- 1. Make a staircase with 1 as the coefficient for each non-zero leading entry
- 2. produce 0's above each leading entry
- 3. General solution: expressing the unknowns that occur as leading entries in terms of those unknowns that do not.

In order to use this method we can:

- Interchange rows
- Multiply any row by an scalar
- Add or subtract any row from any other

Example: Solve the following system by Gaussian elimination,

$$2x_2 - x_3 = -7$$

$$x_1 + x_2 + 3x_3 = 2$$

$$-3x_1 + 2x_2 + 2x_3 = -10$$

Solution:

1. put the system in matrix form:

$$\left(\begin{array}{ccccccc} 0 & 2 & -1 & -7 \\ 1 & 1 & 3 & 2 \\ -3 & 2 & 2 & -10 \end{array}\right)$$

Rubén Pérez Sanz

2. Interchange 1^{st} and 2^{nd} rows

3. Sum to the 3^{rd} row 3 times the 1^{st}

4. Divide the 2^{nd} by 2

5. subtract to the 3^{rd} row 5 times the 2^{nd}

6. Multiply the 3^{rd} by $\frac{2}{27}$

7. Sum to the 2^{nd} row $\frac{1}{2}$ times the 3^{rd} and subtract from the 1^{st} 3 times the 3^{rd} .

(1	1	0	-1	
	0	1	0	-3	
l	0	0	1	1	J

8. subtrac the 2^{nd} from the 1^{st}

$$\left(egin{array}{cccccc} 1 & 1 & 0 & -1 \ 0 & 1 & 0 & -3 \ 0 & 0 & 1 & 1 \end{array}
ight)$$

9. Sum to the 2^{nd} row $\frac{1}{2}$ times the 3^{rd} and subtract from the 1^{st} 3 times the 3^{rd} .

ſ	1	0	0	2	
	0	1	0	-3	
	0	0	1	1	J

The final solution being the vector $\mathbf{x} = (x_1, x_2, x_3) = (2, -3, 1)$
Matrix multiplication is less intuitive than the previous rules since "normal" operations do not apply.

Suppose that $\mathbf{A} = (a_{ij})_{m \times n}$ and that $\mathbf{B} = (b_{ij})_{n \times p}$. Then the product $\mathbf{C} = \mathbf{AB}$ is the $m \times p$ matrix $\mathbf{C} = (c_{ij})_{m \times p}$, whose element in the *i*th row and *j*th column is the **dot (inner) product**:

$$c_{ij} = \mathbf{a_i b_j} = \sum_{r=1}^n a_{ir} b_{rj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{ik} b_{kj} + \dots + a_{in} b_{nj}$$

of the *i*th row of **A** and the *j*th column of **B**.

Rubén Pérez Sanz

Introduction to Linear Algebra

More graphically:

(a ₁₁	 a_{1k}	 <i>a</i> _{1<i>n</i>}		(b ₁₁	 b_{1j}	 ^b 1p		c ₁₁	 c_{1j}	 <i>c</i> _{1<i>p</i>}
:	÷	÷		:	:	÷		:	÷	÷
<i>a</i> _{<i>i</i>1}	 a _{ik}	 a_{in}	•	<i>b</i> _{k1}	 b_{kj}	 b_{kp}	=	c_{i1}	 c_{ij}	 c_{ip}
	÷	:		÷	:	÷		:	÷	÷
<i>a</i> _{m1}	 a_{mk}	 a _{mn})	<i>b</i> _{n1}	 b_{nj}	 bnp		<i>c</i> _{m1}	 c_{mj}	 c _{mp}

Exercise: for matrices to be **conformable** under multiplication the number of columns of **A** needs to be the same as the number of rows of **B**. Are these matrices conformable? operate if they are.

$$\mathbf{A} = \begin{pmatrix} 0 & 3 \\ 7 & 4 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & 8 \\ 3 & 9 \\ 6 & 2 \end{pmatrix}$$

Exercise: for matrices to be **conformable** under multiplication the number of columns of **A** needs to be the same as the number of rows of **B**. Are these matrices conformable? operate if they are.

$$\mathbf{A} = \begin{pmatrix} 0 & 3 \\ 7 & 4 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & 8 \\ 3 & 9 \\ 6 & 2 \end{pmatrix}$$

Solution:

- ► **AB** is not conformable
- BA is conformable

Exercise: for matrices to be **conformable** under multiplication the number of columns of **A** needs to be the same as the number of rows of **B**. Are these matrices conformable? operate if they are.

$$\mathbf{A} = \begin{pmatrix} 0 & 3 \\ 7 & 4 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & 8 \\ 3 & 9 \\ 6 & 2 \end{pmatrix}$$

Solution:

- ► **AB** is not conformable
- BA is conformable

$$\mathbf{C} = \mathbf{B}\mathbf{A} = \begin{pmatrix} 56 & 35\\ 63 & 45\\ 14 & 30 \end{pmatrix}$$

Exercise: a very special property of matrices is that the **commutative property does not hold**. Multiply the following matrices in both ways, i.e. **AB** and **BA**:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & -1 \\ 5 & 2 \end{pmatrix}$$

Exercise: a very special property of matrices is that the **commutative property does not hold**. Multiply the following matrices in both ways, i.e. **AB** and **BA**:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & -1 \\ 5 & 2 \end{pmatrix}$$

Solution:

$$\mathbf{AB} = \begin{pmatrix} 5 & 2\\ 17 & 4 \end{pmatrix} \quad \mathbf{BA} = \begin{pmatrix} -2 & -2\\ 4 & 11 \end{pmatrix}$$

Thanks to this newly introduced notation we can write complex systems of equations in matrix form. Consider the system of equations given in (1):

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

.....

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

We can write the previous system of equations as

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}}_{\mathbf{b}}$$

Hence as

Ax = b

Which is much more compact.

Rubén Pérez Sanz

Introduction to Linear Algebra

(3)

Exercise: Write the following system of equations in matrix form

Exercise: Write the following system of equations in matrix form

Solution:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}$$

MATRIX MULTIPLICATION RULES

Rules of Matrix Multiplication

- Associative: (AB) C = A(BC)
- Left distributive law: A(B + C) = AB + AC
- Right distributive law: $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$
- Associative Scalar multiplication: $(\alpha \mathbf{A}) \mathbf{B} = \mathbf{A} (\alpha \mathbf{B}) = \alpha (\mathbf{AB})$
- **NO** commutative: $AB \neq BA$

MATRIX MULTIPLICATION POWER MATRIX

The most important family of matrices are those that are **square**, in other words the ones that have the same number of rows and columns m = n.

MATRIX MULTIPLICATION POWER MATRIX

The most important family of matrices are those that are **square**, in other words the ones that have the same number of rows and columns m = n.

Power of Matrices: if **A** is a square matrix, the associative law allows us to write AA as A^2 . In general,

 $\mathbf{A}^n = \mathbf{A}\mathbf{A}\cdots\mathbf{A}$ (n times)

POWER MATRIX

Exercise: Let $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Compute A^2 , A^3 , A^4 . Then guess the general rule A^n and prove it by induction.

Rubén Pérez Sanz

POWER MATRIX

Exercise: Let $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Compute A^2 , A^3 , A^4 . Then guess the general rule A^n and prove it by induction.

Solution:

$$\mathbf{A}^{2} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{A}^{3} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{A}^{4} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{A}^{n} = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$$

POWER MATRIX

Exercise: Let $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Compute A^2 , A^3 , A^4 . Then guess the general rule A^n and prove it by induction.

Solution:

$$\mathbf{A}^{2} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{A}^{3} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{A}^{4} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{A}^{n} = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$$

Induction step

$$\mathbf{A}^{k+1} = \mathbf{A}^{k}\mathbf{A} = \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -k-1 \\ 0 & 1 \end{pmatrix}$$

Since this is also true for n = 1 it completes the proof.

Rubén Pérez Sanz

Introduction to Linear Algebra

MATRIX MULTIPLICATION IDENTITY MATRIX

The **Identity Matrix** is the matrix of order *n*, denoted by I_n or I having ones along the main diagonal and zeros elsewhere:

$$\mathbf{I}_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Which has the property that

$$\mathbf{I}_n \mathbf{A} = \mathbf{A} \mathbf{I}_n = \mathbf{A}$$

And that corresponds to 1 in the real number system

Rubén Pérez Sanz

Introduction to Linear Algebra

THE TRANSPOSE

The transpose of a matrix \mathbf{A}' is a matrix whose rows and columns have been swapped. Particularly

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \Rightarrow \mathbf{A}' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

So $A' = (a'_{ij})$ where $a'_{ij} = a_{ji}$

Rubén Pérez Sanz

Introduction to Linear Algebra

40 / 62

THE TRANSPOSE SYMMETRIC MATRIX

Another important kind of matrix are the square ones that are **symmetric** along the main diagonal. They have the property that are equal to its own transpose:

The matrix **A** is sysmmetric \iff **A** = **A**'

Example:

$$\begin{pmatrix} 1 & 2 & 5 \\ 2 & -1 & 8 \\ 5 & 8 & -1 \end{pmatrix}$$

THE TRANSPOSE RULES

Rules of transposition:

- $\blacktriangleright (A')' = A$
- $\blacktriangleright (\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$
- $\blacktriangleright (\alpha \mathbf{A})' = \alpha \mathbf{A}'$
- $\blacktriangleright (\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$

THE TRANSPOSE RULES

Exercise: For what values of *a* is the matrix *A* symmetric? **Example:**

$$\begin{pmatrix} a & a^2 - 1 & -3 \\ a + 1 & 2 & a^2 + 4 \\ -3 & 4a & -1 \end{pmatrix}$$

THE TRANSPOSE RULES

Exercise: For what values of *a* is the matrix *A* symmetric? **Example:**

$$\begin{pmatrix} a & a^2 - 1 & -3 \\ a + 1 & 2 & a^2 + 4 \\ -3 & 4a & -1 \end{pmatrix}$$

Solution: There are two conditions

1. $a+1 = a^2 - 1 \iff a+1 = (a+1)(a-1)$ and there are two cases:

- $a = 1 \Rightarrow 2 = 0$ and there is contradiction
- $a \neq 1 \Rightarrow a = 2$ and this one is a candidate

2.
$$4a = a^2 + 4 \iff a^2 - 4a + 4 = 0 \iff (a - 2)^2 = 0 \Rightarrow a = 2$$

The only one option that coincides in both conditions is a = 2, which is the solution.

Rubén Pérez Sanz

Table of Contents

 Matrix and Vector Algebra Systems of Linear Equations Vectors Matrices and Matrix Operations Marix Multiplication The Transpose

 Determinants and inverse matrices Determinants
 3 order Determinants
 Determinants rules
 Inverse of a Matrix

DETERMINANTS

Determinants are important in many are areas that are of interest for economist.

Basically, the determinant is the **area expansion** of the transformation induced by a matrix, or in other words is the incremental factor that a volume experiences when multiplied by a matrix.

The main feature of the determinant is that it will allow us to rapidly know if a system of equations has solution or not.

DETERMINANTS GEOMETRY

Example of the area expansion caused by a matrix transformation Consider the vector and the matrix

 $\mathbf{v} = (1, 1)$ $\mathbf{T} = \begin{pmatrix} 2 & 0\\ 0 & 1 \end{pmatrix}$

And apply the matrix transformation of **T** to **v** in order to have the new vector v'

$$T \cdot \mathbf{v} = \mathbf{v}' \iff \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \cdot (1, 1) = (2, 1)$$

Because the volume (area in this case) between the origin and the vector has doubled the determinant will be 2.

Rubén Pérez Sanz

Introduction to Linear Algebra

DETERMINANTS

GEOMETRY

Graphically

Area of vector v

Area under the transformation

Consider the following system of equations

$$\begin{array}{l} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{array}, \quad \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
(4)

Consider the following system of equations

$$\begin{array}{l} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{array}, \quad \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
(4)

Solving the system yields (make sure you do it!!!)

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{21} a_{12}}, \quad x_2 = \frac{b_2 a_{11} - b_1 a_{21}}{a_{11} a_{22} - a_{21} a_{12}}$$

Both solutions have common denominator **D** = $a_{11}a_{22} - a_{21}a_{12}$.

For the system (4) to have a solution $D \neq 0$, in this sense *D* determines the solvability of the system, hence the **determinant**.

The determinant of **A** is denoted by $det(\mathbf{A})$ or $|\mathbf{A}|$, thus

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$
(5)

Rubén Pérez Sanz

Introduction to Linear Algebra

2 ORDER DETERMINANTS CALCULATION

Consider the $det(\mathbf{A})$ in (5).

 $egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array}$

The following steps are valid to work out determinants of a square matrix of order 2:

- 1. Multiply the elements of the main diagonal
- 2. Multiply the elements of the off-diagonal elements
- 3. subtract the second step from the first

Consider the system of three linear equations in three unknowns

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

The solutions to this system (x_1, x_2, x_3) will have a **common denominator**, namely the determinant.

Computation

$$|\mathbf{A}| = \begin{vmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{vmatrix} = \begin{cases} a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} \\ -a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{31} \end{vmatrix}$$

Rubén Pérez Sanz

Exercise: Work out the determinant of the following matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & -1 \end{pmatrix}$$

Exercise: Work out the determinant of the following matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & -1 \end{pmatrix}$$

Solution:

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & -1 \end{vmatrix} = -3 + 0 + 6 - 0 + 4 - 4 = 3$$

Rubén Pérez Sanz

DETERMINANTS RULES

The generalisation of determinant for $n \times n$ matrices is not straight forward and we will not see it. However, the next rules apply for the matrix A_n

• If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$

DETERMINANTS RULES

The generalisation of determinant for $n \times n$ matrices is not straight forward and we will not see it. However, the next rules apply for the matrix A_n

• If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$

$$|\mathbf{A}'| = |\mathbf{A}|$$
- If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$
- $\blacktriangleright |\mathbf{A}'| = |\mathbf{A}|$
- If all the elements in a single row or column of A are multiplied by a number *α*, the determinant is multiplied by *α*

- If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$
- $\blacktriangleright |\mathbf{A}'| = |\mathbf{A}|$
- If all the elements in a single row or column of A are multiplied by a number *α*, the determinant is multiplied by *α*
- If two rows (or two columns) of **A** are interchanged, the determinant changes sign

- If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$
- $\blacktriangleright |\mathbf{A}'| = |\mathbf{A}|$
- If all the elements in a single row or column of A are multiplied by a number *α*, the determinant is multiplied by *α*
- ► If two rows (or two columns) of **A** are interchanged, the determinant changes sign
- If a row (or column) is a linear combination of the rest, then $|\mathbf{A}| = 0$

- If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$
- $\blacktriangleright |\mathbf{A}'| = |\mathbf{A}|$
- If all the elements in a single row or column of A are multiplied by a number *α*, the determinant is multiplied by *α*
- If two rows (or two columns) of **A** are interchanged, the determinant changes sign
- If a row (or column) is a linear combination of the rest, then $|\mathbf{A}| = 0$
- The value of the determinant of A is unchanged if a multiple of one row (or one column) is added to a different row (or column) of A

- If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$
- $\blacktriangleright |\mathbf{A}'| = |\mathbf{A}|$
- If all the elements in a single row or column of A are multiplied by a number *α*, the determinant is multiplied by *α*
- ► If two rows (or two columns) of **A** are interchanged, the determinant changes sign
- If a row (or column) is a linear combination of the rest, then $|\mathbf{A}| = 0$
- The value of the determinant of A is unchanged if a multiple of one row (or one column) is added to a different row (or column) of A
- ► The determinant of the product of two $n \times n$ matrices **A** and **B** is the product of the determinants of each of the factors: $|\mathbf{AB}| = |\mathbf{A}| \cdot |\mathbf{B}|$

- If all the elements in a row or column of **A** are **0**, then $|\mathbf{A}| = 0$
- $\blacktriangleright |\mathbf{A}'| = |\mathbf{A}|$
- If all the elements in a single row or column of A are multiplied by a number *α*, the determinant is multiplied by *α*
- ► If two rows (or two columns) of **A** are interchanged, the determinant changes sign
- If a row (or column) is a linear combination of the rest, then $|\mathbf{A}| = 0$
- The value of the determinant of A is unchanged if a multiple of one row (or one column) is added to a different row (or column) of A
- ► The determinant of the product of two $n \times n$ matrices **A** and **B** is the product of the determinants of each of the factors: $|\mathbf{AB}| = |\mathbf{A}| \cdot |\mathbf{B}|$
- If α is a real number, $|\alpha \mathbf{A}| = \alpha^n |\mathbf{A}|$

In the real number system, for every non-zero number *a* there is another number such that $a \cdot a^{-1} = 1$. We call this number a^{-1} the inverse of *a*.

The simile to 1 in the matrix system is the identity matrix I_n , in this sense we say that **X** is the inverse of **A** if the next relation applies

$$\mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A} = \mathbf{I} \tag{6}$$

Then **A** is said to be invertible.

Rubén Pérez Sanz

Introduction to Linear Algebra

The sufficient and necessary condition for a matrix to be **invertible** is:

A has an inverse \iff $|\mathbf{A}| \neq 0$

The sufficient and necessary condition for a matrix to be **invertible** is:

A has an inverse $\iff |\mathbf{A}| \neq 0$

if $|\mathbf{A}|=0$ the matrix is said to be singular and non-singular if $|\mathbf{A}|\neq 0$

The sufficient and necessary condition for a matrix to be **invertible** is:

A has an inverse $\iff |\mathbf{A}| \neq 0$

if $|\mathbf{A}| = 0$ the matrix is said to be singular and non-singular if $|\mathbf{A}| \neq 0$

The inverse of a matrix is unique, indeed assuming that **Y** and **X** are inverses of **A** and by (6)

$$\mathbf{Y} = \mathbf{I}\mathbf{Y} = (\mathbf{X}\mathbf{A})\,\mathbf{Y} = \mathbf{X}\,(\mathbf{A}\mathbf{Y}) = \mathbf{X}\mathbf{I} = \mathbf{X}$$

provided it exists

Rubén Pérez Sanz

Introduction to Linear Algebra

INVERSE OF A MATRIX INVERSE PROPERTIES

Let **A** and **B** be invertible $n \times n$ matrices. Then:

- \mathbf{A}^{-1} is invertible, and $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- **AB** is invertible, and $(AB)^{-1} = (B)^{-1} (A)^{-1}$
- The transpose \mathbf{A}' is invertible, and $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$
- $(c\mathbf{A})^{-1} = c^{-1}\mathbf{A}^{-1}$ whenever *c* is a number $\neq 0$

Suppose we have a matrix **A**, then we need to find a matrix **B** such that $\mathbf{A} \cdot \mathbf{B} = I$. An efficient way to look for **B**, provided it exists, is

- 1. From the $n \times 2n$ matrix (**A** : **I**)
- 2. Apply elementary operations to transform it into an $n \times 2n$ matrix (**I** : **B**)
- 3. It follows $\mathbf{B} = \mathbf{A}^{-1}$

Suppose we have a matrix **A**, then we need to find a matrix **B** such that $\mathbf{A} \cdot \mathbf{B} = I$. An efficient way to look for **B**, provided it exists, is

- 1. From the $n \times 2n$ matrix (**A** : **I**)
- 2. Apply elementary operations to transform it into an $n \times 2n$ matrix (**I** : **B**)
- 3. It follows $\mathbf{B} = \mathbf{A}^{-1}$

Example: Find the inverse of

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3 \end{pmatrix}$$

FINDING THE INVERSE

Solution:

1.

(1	3	3	1	0	0	١
	1	3	4	0	1	0	
l	1	4	3	0	0	1)

2. Interchange the 2nd and 3rd rows

ſ	1	3	3 1	0	0 `
	1	4	3 0	0	1
l	1	3	$4 \mid 0$	1	0

3. Subtract the 1st row from 2nd and 3rd rows

4. Subtract 3 times the 2^{nd} and 3^{rd} rows from the 1^{st} row

3. Subtract the 1st row from 2nd and 3rd rows

4. Subtract 3 times the 2^{nd} and 3^{rd} rows from the 1^{st} row

INVERSE OF A MATRIX IMPORTANCE

The most important feature of the inverse is that it will allow us to solve complex systems of equations such as (1)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

.....

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

IMPORTANCE

As before you can write this system in matrix form like in (3)

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{\mathbf{A}} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}}_{\mathbf{b}}$$

Hence as

Ax = b

Taking the inverse of **A** we would have solved the system in just one step:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Rubén Pérez Sanz

Introduction to Linear Algebra